Hypovalent Radicals. Chemical Trapping of Electrogenerated Diazoalkane Anion Radicals

By F. M. TRIEBE, M. DALE HAWLEY,* and RICHARD N. McDonald* (Department of Chemistry, Kansas State University, Manhattan, Kansas 66506)

Summary Diazoalkane anion radicals produced by electroreduction of diazodiphenylmethane (Ph₂CN₂) and 9-diazofluorene (FlN₂) in the presence of certain proton donors yield the corresponding hydrazones (R₂C=NNH₂); formation of diphenylmethane from electroreduction of Ph₂CN₂ is shown to proceed by formation of the carbene anion radical Ph₂C·-.

Bethell et al. recently published results suggesting a new chain reaction for the conversion of R₂CN₂ into azines

[(R₂C=N-)₂] involving R₂CH⁻ as the initiator and R₂CN₂·- as the chain carrying species. This prompts us to report that electroreductions of diazodiphenylmethane (Ph₂CN₂) and 9-diazofluorene (FlN₂) in the presence of proton donors trap the diazoalkane anion radicals (R₂CN₂·-) yielding the hydrazones (R₂C=NNH₂), and that the other major product from Ph₂CN₂, Ph₂CH₂, is produced exclusively via the carbene anion radical, Ph₂C·-.

Using h.p.l.c. rather than g.p.c. to analyse the products from controlled potential electrolytic reductions of

Table. Product studies of the controlled-potential, electrolytic reductions of diazodiphenylmethane and diazofluorene.^a

				% Yield of products							
Run	Cmpd. (conc./mm)	[DEM]/	$E_{\substack{ ext{app}\ ext{V}}}/$	n	R ₂ C=N- N=CR ₂	R_2CH_2	R ₂ C=O	R ₂ C=NNH ₂	R ₂ C= NNHCHR ₂	R_2CN_2	$\begin{array}{c} \mathrm{R_2CH_2/} \\ \mathrm{R_2C=NNH_2} \end{array}$
1	$Ph_{2}CN_{2}(4.53)$	0	-1.20	0.40	78	5	0.8	0.6	$2 \cdot 2$	5	8
2	$Ph_{\bullet}CN_{\bullet}(4.54)$	39	-1.10	2.00	0.7	85	1.0	7.6	3.0	$2 \cdot 4$	11
3	Ph.CN.(3.02)b	32	-1.20	$2 \cdot 45$	$1 \cdot 3$	44	$2 \cdot 6$	21	$2 \cdot 7$	18	2
4	$Ph_2CN_2(1\cdot40)^{b}$	143	-1.20	2.00	0.3	34	с	37	$2 \cdot 5$	24	0.9
5	$Fl\tilde{N}_{2}(3.37)$	0	-0.53	0.16	97	1.0	0.5	trace	е	$2 \cdot 7$	
6	$FlN_2(3\cdot27)$	20	-0.57	0.50	73	0.6	8	14	c	3.1	0.04

^a Reductions were effected at a platinum cathode in DMF-0·1 F Bu n_4 NClO $_4$ at room temperature (20—23 °C); potentials are with respect to a cadmium amalgam reference electrode which is saturated with respect to NaCl and CdCl $_2$ in DMF.

^b Reduction effected at 0 °C. ° Not detected.

Ph₂CN₂ and FlN₂ (dimethylformamide-0·1 F Bun₄NClO₄ at platinum electrodes),2,3 small, but discernible, amounts of simple hydrazones, R₂C=NNH₂, were observed as products (runs 1 and 5, Table). Control experiments demonstrated that these hydrazones were not produced from the other nitrogen-containing products upon electroreduction at the applied potential.

In order to establish a plausible mechanism by which these hydrazones are produced, the electroreductions of the two diazoalkanes were carried out in the presence of numerous proton donors including electro-inactive diethyl malonate (DEM). These results (compare run 1 with runs 2-4) show that the addition of DEM to the electrolysis solution of Ph₂CN₂ causes significant increases in the yields of Ph₂CH₂ and Ph₂C=NNH₂ and a concomitant decrease in the yield of benzophenone azine (Ph₂C=N-N=CPh₂). More importantly, the Ph₂CH₂/Ph₂C=NNH₂ product ratio decreases with both increasing concentration of DEM and decreasing temperature (runs 2-4). These results are clearly inconsistent with ambident behaviour of Ph₂CN₂. towards protonation as the only source of Ph₂CH₂ (equations 3, 4). We consider that the other intermediate leading to Ph₂CH₂ is Ph₂C⁻.

$$Ph_2CN_2 + e^- \rightarrow Ph_2CN_2^{\bullet -} \tag{1}$$

$$\begin{array}{c} H^{+} & \stackrel{e^{-}, H^{+}}{\longrightarrow} Ph_{2}C=NNH_{2} & (2) \\ & \stackrel{H^{+}}{\longrightarrow} Ph_{2}C=NNH_{2} & \stackrel{e^{-}, H^{+}}{\longrightarrow} Ph_{2}CH_{2} + N_{2} & (3) \\ & \stackrel{-N_{2}}{\longrightarrow} Ph_{2}C^{-} & \stackrel{e^{-}, 2H^{+}}{\longrightarrow} Ph_{2}CH_{2} & (4) \end{array}$$

Cyclic voltammetric studies of the reduction of Ph₂CN₂ at 0 °C show Ph₂CH⁻ to be the only oxidizable intermediate at scan rates in excess of 10 V s⁻¹. As the scan rate is decreased, the following sequence of kinetically linked intermediates is observed: $Ph_2CH^- \rightarrow Ph_2CHN-N=CPh_2 \rightarrow$

Ph₂C=N-N=CPh₂²⁻. These observations specifically exclude Ph₂CN₂·-, Ph₂CN₂H·, Ph₂C·-, and Ph₂CH· as the first species to react with Ph₂CN₂ in the formation of the azine.⁴ This point and the above chemical trapping results require that formation of Ph₂C⁻⁻ is a major reaction channel in product formation.

Electroreduction of FlN2 in the presence of DEM produced $Fl=NNH_2$ and the azine $(Fl=N-)_2$ (run 6). Subsequent control experiments demonstrated that Fl=NNHis only slowly protonated by DEM and that it reacts rapidly with FlN₂ to form the azine.⁴ Proton donors which protonate Fl=NNH- rapidly are also electroactive and cannot be used with these electrochemical methods. However, the fact that the yield of Fl=NNH2 was significantly increased in the presence of DEM with no change in the yield of FlH₂ strongly suggests that FlN₂. does not function as an ambident species towards reaction with DEM. The planar structure and stabilization of the anion radical by the 9-fluorenylidene ring system should emphasize such ambident behaviour at C-9 of FlN2. With Ph2CN2., steric and electronic factors disfavour protonation at $C-\alpha$ compared with FIN2. Since proton transfer involves lower activation barriers than most other reactions, e.g. hydrogen atom abstraction, we believe that both Ph₂CN₂.and FlN₂.- react only at the terminal nitrogen. Thus, the sole precursor to Ph₂CH₂ from electroreduction of Ph₂CN₂

We thank the National Science Foundation for support of this research.

(Received, 27th February 1980; Com. 221.)

¹ J. M. Bakke, D. Bethell, P. J. Galsworthy, K. L. Handoo, and D. Jackson, J. Chem. Soc., Chem. Commun., 1979, 890.

M. Barke, D. Bethell, F. J. Galswottly, R. L. Haldob, and D. Jackson, J. Chem. Soc., Chem. Commun., 1919, 890.
 R. N. McDonald, R. January, K. J. Borhani, and M. D. Hawley, J. Am. Chem. Soc., 1977, 99, 1268.
 R. N. McDonald, K. J. Borhani, and M. D. Hawley, J. Am. Chem. Soc., 1978, 100, 995.
 R. N. McDonald, F. M. Triebe, and M. D. Hawley, unpublished results.
 R. N. McDonald, A. K. Chowdhury, and D. W. Setser, J. Am. Chem. Soc., in the press; results of the gas-phase chemistry of the sorbore opiographic and the description of the corbors opiographic and the description cyclopentadienylidene anion radical have established that the principal reaction channel of the carbene anion radical with the diazo compound is formation of the corresponding azine anion radical.